Salah M. Tawfik
Changwon National University,Korea.
Title: Nonionic Alginate-Functionalized Upconversion Nanoparticles for Enhancing NIR-Imaging and Targeted Delivery of Doxorubicin to KB Cancer cells.
Biography
Biography: Salah M. Tawfik
Abstract
A novel nanocarrier with great biocompatibility, imaging functionality, and drug delivery ability has been developed. In this work, the carrier poly(ethylene glycol)bis(amine)-modified alginate (Al-NH-PEG-NH2) with folate (FA) as the targeting molecule (Al-NH-PEG-NH-FA) were synthesized to act as functionalizing agents for UCNPs. The synthesized polymer enhanced the stability, biocompatibility and upconversion luminescent intensity (20-fold) of the UCNPs compared to bare UCNPs. The UCNP-Al-NH-PEG-NH-FA nanocarrier enabled the specific targeting of folate receptor-positive KB cells, as confirmed via in vitro near infrared (NIR) imaging. The anticancer drug doxorubicin (DOX) was loaded onto the nanocarrier with high drug loading efficacy (81.2%) then the pH-responsive drug releasing ability was measured. The release of DOX from the nanocarrier was pH dependent, and the release rate was much faster at a lower pH (pH=5) than at a higher pH (pH=7.2). The in vitro evaluation of KB cells demonstrated that the DOX-loaded UCNP-Al-NH-PEG-NH-FA provided a sustained intracellular DOX release and a prolonged DOX accumulation in the nucleus, resulting in a prolonged therapeutic efficacy. Additionally, the DOX-loaded UCNP-Al-NH-PEG-NH-FA showed higher cytotoxicity towards the KB cells than free DOX. Thus, the biocompatible nonionic alginate-functionalized UCNPs hold substantial potential to be further developed as effective NIR imaging agents and drug-delivery carriers.